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Abstract 
Quantum-dot cellular automata are a method 
of computation using a small number of 
electrons. This paper explores the use of 
quantum-dot cellular automata as logic 
devices and proposes a way to increase the 
reliability of these devices. By manipulating 
their architecture, the energy difference 
between the ground state and the first excited 
state can be increased. A larger difference 
allows for higher operating temperatures at 
the same reliability level or increased 
reliability at lower temperatures. The 
architectural changes explored in this paper 
include limiting the number of quantum dots 
accessible by an electron within a cell and the 
addition of a secondary layer of quantum-dot 
cells. 
 
Keywords: computer architecture, quantum-
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1. Introduction 
 

The computer age has developed with one 
goal at the forefront: make computers run 
faster and more efficiently in less space. 
Quantum-dot cellular automata (QCA) are one 
of the current leading approaches on how to 
achieve this goal. 

The idea of using quantum-dots for 
computing was first described in detail by 
Tougaw and Lent [1]. Logic devices such as 
AND, OR, and NOT can be constructed by 
grouping quantum-dot cells in certain 
configurations [2]. These primitive devices 
can then be combined hierarchically to form a 
QCA circuit. 

In general, QCA circuits compute via 
energy relaxation. The input to the circuit is 

represented as a bit-string and a set of cells, 
denoted input cells, and is fixed to specific 
polarizations representing the bit-string. The 
device then is allowed to relax into the lowest 
energy, or ground, state. The polarizations of 
another set of cells, denoted the output cells, 
reflect the bit-string representation of the 
output. 

 If the temperature of an automaton is 
too high, its electrons can relocate from the 
ground state configuration (where it is 
assumed that the polarizations of the output 
cells are correct) to an excited state (where it 
is assumed the output cell polarizations are 
incorrect). By increasing the energy 
difference (herein ∆) between the ground state 
and the first excited state, an automaton can 
be made more reliable at a given temperature 
or made to operate with the same reliability at 
a higher temperature. 

Lusth, Hanna, and Díaz-Vélez [3] have 
proposed two methods for increasing ∆ in a 
two-cell automaton for computing IDENTITY: 
partitioning the cells and adding an additional 
layer of cells. This paper investigates 
applying these methods to increase the 
reliability of automata more complex than the 
two-cell IDENTITY automaton, namely the 
primitive QCA logic devices.  

 

2. Background 
 

The basic unit of QCA is the quantum cell. A 
standard quantum cell consists of four 
quantum dots positioned at the vertices of a 
square. Each cell also contains two electrons. 
These electrons can quantum-mechanically 
“tunnel” from one quantum dot to another, 
but they cannot escape the cell. This tunneling 
allows an automaton to relax to its ground 
state, a state of minimum energy. As shown in 



 

Figure 1, a cell has two preferred states where 
electron separation is maximized, suggesting 
an encoding scheme for binary information 
[1,4]. 

 

 

Figure 1. The schematic of a cell, with the two bi-
stable states. The circles represent quantum dots. The 

circles filled in with black contain electrons. By 
convention, the left cell represents a logical zero, 
whereas the right cell represents a logical one. 

2.1 Logical vs. non-logical states 

There are other possible configurations of 
electrons within a cell, but these states are 
considered non-logical [3], since only the two 
antipodal configurations shown in Figure 1 
have logical interpretations. Figure 2 
illustrates the more important non- logical 
states. 

 

 

Figure 2. Non-logical cells. None of these four cells 
represent a binary value. 

Other non- logical states, not shown, exhibit 
the simultaneous occupation of a dot by two 
electrons. Such states are assumed to be 
prohibitively expensive, energy-wise, and 
therefore, not considered in this paper. 

Often, the energies of configurations 
with non-logical cells lie between the energies 
of the desired ground state and excited states 
with purely logical cells. By prohibiting or 
promoting the non- logical states in these 
cases, ∆ increases since a higher excited state 
becomes the first excited state. With 
increasing ∆, the automaton becomes more 
reliable, as can be seen from the viability 

relation [5], 1)ln( <<





∆
n

kT  where k is 

Boltzman’s constant, T is temperature, and n 
is the number of cells in the automaton. If the 
viability relation holds, the automaton will 

compute correctly. The smaller the left-hand 
side of the relation, the less likely an electron 
will be found in the “wrong” quantum dot. 
2.2 QCA geometry 

The standard geometry for a QCA is a nearest 
neighbor dot spacing of 20 nm and a center-
to-center cell spacing of 60 nm [6]. As 
detailed in [3], under the standard geometry, 
the cells of both the ground state and first 
excited state of an automaton for computing 
IDENTITY are logical. By increasing the dot 
spacing to 40 nm (while keeping the cell-
spacing constant), the two logical states 
spread apart, with non- logical states falling 
between the two logical configurations. By 
prohibiting some of these non-logical states 
and promoting the others to higher energies, 
the logical, but incorrect, state becomes the 
first excited state and thus ∆  is increased. A 
summary of how the non- logical states can be 
removed from consideration is found in the 
next section. The dimensions under which 
these effects can be seen (a dot-spacing of 40 
nm and a cell-spacing of 60 nm) will herein 
be referred to as the alternate dimensions. 
2.3 Eliminating non-logical states 

Partitioning the cells into two equal sections 
can eliminate some non- logical states and will 
increase ∆ if the eliminated states lie between 
the logical states. A QCA cell can either be 
partitioned horizontally or vertically, as 
shown in Figure 3. 
 

 

 

Figure 3. Partitioned cells. A horizontally 
partitioned cell on the left and a vertically partitioned 

cell on the right. 

It is assumed that an electron cannot escape 
its partition of the cell; therefore, it only has 
two choices of location. 

For example, partitioning the cell 
horizontally prohibits the second and third 



 

configurations in Figure 2. However, a cell 
can only be partitioned one way, eliminating 
only two of the four non- logical states. 
Placing a second layer, especially with 
opposite partition geometry, directly on top 
(or below), can promote the remaining non-
logical states to higher energies. The layered 
and partitioned system for simple IDENTITY 
yields a 20-fold improvement in ∆ over a 
single layered system using the standard 
dimensions [3]. 

2.4 QCA Logic Devices 

A line of QCA cells, denoted a binary wire, 
can be considered a logical device which 
computes the IDENTITY function. In its 
ground state, every cell in a line of cells has 
the same polarization as the first, or input, 
cell, as shown in Figure 4.  
 

 

 

Figure 4. A line of quantum-dot cells or binary 
wire. 

Therefore, the last, or output, cell will have 
the same polarization as the input cell. Purely 
linear wires have been studied in the context 
of increasing ∆ in [7], but there are two 
useful, non- linear, forms of wires. They are a 
“Fan-Out”, which allows the propagation of a 
value to two or more other points within the 
array, as shown in Figure 5, and a “Corner in 
a Wire”, which changes the direction of the 
line of cells, as shown in Figure 6. 
 

 

 

Figure 5. A Fan-Out. Both output cells on the top 
and bottom have the same polarization as the input cell 

on the left. 

 

 
 

Figure 6. A Corner in a Wire. The output cell on 
top has the same polarization as the input cell on the 

left. 

Arrangements of cells can also be used 
as logic devices for Boolean Algebraic 
calculations [2]. The most common 
operations used in the Boolean algebra are 
AND, OR, and NOT gates. NOT gates, or 
inverters, are realized as QCA as shown in 
Figure 7. 

 

 
 

Figure 7. A QCA Inverter. A signal comes in from 
the left, splits into two wires, and is inverted at the 

point of convergence. 

 An AND gate is shown in Figure 8. 
The top cell is fixed (as indicated by its 
thicker border) in the “0” position. Only when 
inputs A and B are polarized in the “1” 
position, does the device cell and the output 
cell take on the “1” orientation. An OR gate is 
constructed by fixing the top cell to a “1” 
position.  
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Figure 8. An AND gate. The polarizations of the 
device and output cells are always the same as the 

majority of the inputs and the fixed cell (indicated by 
the thicker boarder). 



 

 
2.5 Modeling QCA 

Calculating the ground states of QCA, for the 
purposes of this paper, will be computed 
classically, as suggested by Akazawa, 
Amemiya, and Shibata [8]. The classical 
computation of the energy of point charges is 
obtained by summing over all pairs of 

charges: ∑ ⋅
=

allpairs r
qq

E
πε4

21 , where q1 and q2  

are the charges in the pair, ε is the permittivity 
of the space between them, and r is the 
distance between them. For the calculations in 
this paper, ε is taken to be permittivity of free 
space. Compensating charges, for maintaining 
cell neutrality, are handled in the idealized 
fashion found in [6]. This approach assumes 
an effective positive charge with magnitude ½ 
e is placed on each dot of a cell. Thus an 
occupied dot is considered to have a charge of 
– ½, while and unoccupied dot has a charge of 
+ ½. 
 

3. Improved Logic Devices 
The use of partitioning and layering 
dramatically increases ∆ for the QCA 
primitive logic devices. Table 1 summarizes 

the improvements in ∆ that can be achieved 
by partitioning and layering. Each device is 
examined in detail in the following 
subsections. 

3.1 Improved Corner Turns and Fan-Outs  

To achieve gains in ∆ similar to the 20-fold 
gains for simple IDENTITY, the cells in a 
single layer binary wire must be partitioned in 
the direction of information flow. A similar 
style of partition must be followed for corner 
turns and fan-outs. For example, an un-
partitioned, single- layer, three-cell corner turn 
with standard dimensions has a ∆ of 1.481 
meV. The alternate dimensions yield a nearly 
six-fold increase in ∆. If the input and output 
wires are partitioned in their direction of 
information flow and the cell in the absolute 
corner is partitioned in the same way as the 
input wire, a nearly eleven-fold increase in ∆  
results (Figure 9). The addition of a secondary 
layer partitioned perpendicular to the primary 
yields approximately a nineteen-fold increase. 
For exact numbers, refer to Table 1. 
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Device 
Original 

Dimensions 
 

 
Alternate 

Dimensions 
 

 
Partitioned 

 

Partitioned 
and Layered 

 

Max Percent 
Improvement 

 
Corner Turn 1.481 8.330 15.56 27.83 1779 

Fan-Out 1.087 7.983 16.02 21.00 1831 

NOT 0.751 9.531 15.46 20.82 2672 

AND 1.143 4.550 16.96 21.21 1755 

 
Table 1. Data for Partitioned Logic Devices in sections 3.1 through 3.3. 
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Figure 9. Partitioned corner in a wire. 

A fan-out works in very much the same 
way as a corner, except there are two output 
wires instead of one. ∆ is maximized when 
the cell at the vertex is partitioned along with 
the majority of the adjoining wire, as shown 
in Figure 10.  

 

 
 

Figure 10. A partitioned fan-out. 

For example, an un-partitioned, single layer 
four cell fan-out with standard dimensions has 
a ∆ of 1.087 meV. The alternate dimensions 
yield a seven-fold increase in ∆. Partitioning 
the fan-out as described above yields a 
fifteen-fold increase in ∆. The addition of a 
secondary layer partitioned perpendicular to 
the primary yields a nineteen-fold increase. 
3.2 Improved AND Gates 

An AND gate, under the standard dimensions, 
has a ∆ of 1.143 meV. Changing to the 
alternate dimensions yields a four-fold 
increase in ∆. Partitioning the device and 
output cells vertically, while the left and right 
input cells are partitioned horizontally (Figure 
11), yields a fifteen-fold increase. 
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Figure 11. A partitioned AND Gate. The top cell 
(with the thicker border) is fixed and thus does not 
need to be partitioned. 

To further increase the ∆, a second layer 
inversely partitioned to the primary layer 
could be attached to the majority gate. If all 
the cells on the primary layer are partitioned 
as described above, the addition of a 
secondary layer partitioned perpendicular to 
the primary yields a nineteen-fold increase in 
∆. 
3.3 Improved Inverter 

An inverter works very much in the same way 
as a binary wire. All of the cells must be 
partitioned in the direction of information 
flow, except for two. For example, a single 
layer inverter with the standard dimensions 
has a ∆ of 0.751 meV. Changing to the 
alternate dimensions yields a thirteen-fold 
increase in ∆. If all of the cells are partitioned 
in the direction of the information flow, 
except for cells A and B, as shown in Figure 
12, there is a twenty-one-fold increase in ∆. 
With the addition of a second layer 
partitioned perpendicular to the primary, the 
result is a twenty-eight- fold increase. 
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Figure 12. A simplified version of a partitioned 
inverter. Notice cells A & B are partitioned 
perpendicular to the direction of the information flow. 



 

4. Conclusion 
By partitioning the cells and the addition of a 
second layer, the reliability of most of the 
primitive QCA logic devices can be greatly 
improved. 

• The partitioning of an AND gate 
yielded a 14.8-fold increase in ∆. The 
addition of a secondary layer yielded 
an 18.6–fold increase. 

• The partitioning of an inverter yielded 
a 20.6-fold increase in ∆. The addition 
of a secondary layer yielded a 27.7–
fold increase. 

• The partitioning of a corner turn 
yielded a 10.5-fold increase in ∆. The 
addition of a secondary layer yielded 
an 18.8–fold increase. 

• The partitioning of a fan-out yielded a 
14.7-fold increase in ∆. The addition 
of a secondary layer yielded a 19.3–
fold increase. 

 By the viability relation, the highest 
operating temperature increases with an 
increasing ∆. Even though n doubles when a 
secondary layer is added to the system, the 
fact that the viability relation factors in the 
natural logarithm of n greatly reduces the 
affect of the number of cells on viability. 
With the improvements in ∆  gained via the 
alternate dimensions and judicious removal of 
non- logical states, QCA have become a much 
more practical approach to create a faster, 
denser circuit. 
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